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Abstract—In audio-visual automatic speech recognition
(AVASR) both acoustic and visual modalities of speech are used
to determine what a speaker is saying.

In this paper we propose a basic AVASR system that uses mel-
frequency cepstrum coefficients (MFCCs) as acoustic features,
active appearance model (AAM) parameters as visual features,
and dynamic Bayesian Networks (DBNs) as probabilistic models
of audio-visual speech.

The performance of the AVASR system is tested using the
Clemson University audio-visual experiments (CUAVE) database.
As expected, we find that visual-only speech recognition (au-
tomatic lip-reading) performs worse than audio-only speech
recognition. However, by integrating visual and acoustic speech
information we are able to significantly increase performance, in
particular in noisy acoustic environments.

I. INTRODUCTION

Motivated by the multi-modal manner humans perceive
their environment, research in audio-visual automatic speech
recognition (AVASR) focuses on the integration of acoustic
and visual speech information with the purpose of improving
accuracy and robustness of automatic automatic speech recog-
nition systems. AVASR is in particular expected to perform
better than audio-only automatic speech recognition (ASR)
in noisy acoustic environments, as the visual channel is not
affected by acoustic noise.

Functional requirements for an AVASR system include
acoustic and visual feature extraction, learning, and classifi-
cation.

In this paper we propose a basic AVASR system using mel-
frequency cepstrum coefficients (MFCCs) as acoustic features,
active appearance model (AAM) parameters as visual features,
and dynamic Bayesian Networks (DBNs) as probabilistic
models of audio-visual speech.

The performance of the AVASR system is tested using
the Clemson University audio-visual experiments (CUAVE)
database. As expected, we find that visual-only speech recog-
nition (automatic lip-reading) in general performs worse than
audio-only speech recognition. However, by integrating visual
and acoustic speech information we are, in particular in
noisy acoustic environments, able to obtain significantly better
performance than what is possible with audio-only ASR.

Fig. 1. Acoustic feature extraction from an audio sample of the spoken word
‘zero’. Mel-cepstrum (top) and original audio sample (bottom).

II. FEATURE EXTRACTION

A. Acoustic Speech

MFCCs are the standard acoustic features used in most
modern speech recognition systems. In [1] MFCCs are shown
experimentally to give better recognition accuracy than alter-
native parametric representations.
MFCCs are calculated as the cosine transform of the

logarithm of the short-term energy spectrum of the signal,
expressed on the mel-frequency scale. The result is a set of
coefficients that approximates the way the human auditory
system perceives sound.
The total number of MFCC feature vectors obtained from

a single audio sample depends on the duration of the original
sample, the sample rate, the chosen window size, and the
amount of overlap between adjacent windows.
Figure 1 shows an audio sample of the word ‘zero’ together

with the corresponding mel-frequency cepstrum.

B. Visual Speech

While acoustic speech features can be extracted through
a sequence of transformations applied to the original input
signal, extracting visual speech features is in general more
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Fig. 2. Triangulated base shape s0 (top left), and first three shape vectors
p1 (top right), p2 (bottom left) and p3 (bottom right) represented by arrows
superimposed onto the triangulated base shape.

complicated. The visual information relevant to speech is
mostly contained in the motion of visible articulators such
as lips, tongue and jaw. In order to extract this information
from a video sequence it is advantageous to track the complete
motion of the speaker’s face and selected facial features.
AAM fitting [2] is an efficient and robust method of tracking

the motion of deformable objects in a video sequence. AAMs
model variations in shape and texture of an object of interest.
In contrast to MFCCs, AAMs require prior training before
being used for feature extraction. In order to build an AAM it
is necessary to provide sample images with the shape of the
object annotated.
The shape of an appearance model is given by a set of (x, y)

coordinates represented in the form of a column vector

s = (x1, y1, x2, y2, . . . , xn, yn)
T. (1)

The coordinates are relative to the coordinate frame of the
image.
Shape variations are restricted to a base shape s0 plus a

linear combination of N shape vectors

s = s0 +
N∑
i=1

pisi (2)

where pi are called the shape parameters of the AAM.
The base shape and shape vectors are normally generated

by applying principal component analysis (PCA) to a set of
manually annotated training images. The base shape s0 is the
mean of the object annotations in the training set, and the
shape vectors are the N singular vectors corresponding to the
N largest singular values of the training shape data matrix.
Figure 2 shows an example of a base mesh and the first
three shape vectors corresponding to the three largest singular
values.
The appearance of an AAM is defined with respect to the

base shape s0. Appearance variation is restricted to a base

Fig. 3. Mean appearance A0 (top left) and first three appearance images A1

(top right), A2 (bottom left) and A3 (bottom right).

appearance plus a linear combination ofM appearance vectors

A(x) = A0 +

M∑
i=1

λiAi(x) ∀x ∈ s0. (3)

To generate an appearance model, the training images are first
shape-normalized by warping each image onto the base mesh
using a piecewise affine transformation. Noting that two corre-
sponding sets of three points are sufficient for determining an
affine transformation, the shape mesh vertices are first triangu-
lated. The collection of corresponding triangles in two shape
meshes then defines a piecewise affine transformation between
the two shapes. Next, the pixel values within each triangle in
the training shape s are warped onto the corresponding triangle
in the base shape s0 using the affine transformation defined
by the two triangles.
The appearance model is generated from the shape-

normalized images using PCA. Figure 3 shows an example
of a base appearance and the first three appearance images.
Tracking of an appearance in a sequence of images is per-

formed by minimizing the difference between the base model
appearance, and the input image warped onto the coordinate
frame of the AAM. For a given image I we minimize

argmin
λ,p

∑
x

[
A0(x) +

M∑
i=1

λiAi(X)− I(W(x;p))

]2

(4)

where p = {p1, . . . , pN}, λ = {λ1, . . . ,λM} and x ∈ s0.
Note that, for the remaining discussion of AAMs, we assume
that the domain of x is the image coordinates contained within
the base mesh s0 (as in (4)).
In (4) we are looking for the optimal alignment of the

input image, warped backwards onto the frame of the base
appearance A0(x). A motivation for the backwards warp can
be found in [3].
For simplicity of the presentation, we shall only consider

variation in shape and ignore texture variation. The derivation
for the case including texture variation is available in [3].
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Consequently (4) reduces to

argmin
p

∑
x

[A0(x)− I(W(x;p))]2. (5)

Solving (5) for p is a non-linear optimization problem. This
is the case even if W(x;p) is linear in p as the pixel values
I(x) are in general nonlinear in x.
The quantity that is minimized in (5) is the same quantity

that is minimized in the classic Lucas-Kanade image alignment
algorithm [4]. In the Lukas-Kanade algorithm the problem is
first reformulated as

argmin
∆p

∑
x

[A0(X)− I(W(x;p+∆p))]2. (6)

This equation differs from (5) in that we are now optimizing
with respect to ∆p while assuming p is known. Given an
initial estimate of p we update with the value of ∆p that
minimizes (6) to give

p∗ = p+∆p. (7)

This will necessarily decrease the value of (5) for the new
value of p. Replacing p with the updated value for p∗, this
procedure is iterated until convergence at which point p yields
the (local) optimal shape parameters for the input image I .
To solve (6) Taylor expansion is used, which gives

argmin
∆p

∑
x

[
A0(W(x;p)) − I(W(x;p)) −∇I

∂W

∂p
∆p

]2
(8)

where ∇I is the gradient of the input image and ∂W/∂p is
the Jacobian of the warp evaluated at p.
The optimal solution to (8) is found by setting the partial

derivative with respect to ∆p equal to zero which gives

2
∑
x

[
∇I

∂W

∂p

]T [
A0(x)− I(W(x)) −∇I

∂W

∂p
∆p

]
= 0.

(9)
Solving for ∆p we get

∆p = H−1
∑
x

[
∇I

∂W

∂p

]T
[A0(x) − I(W(x;p))] (10)

where H is the Gauss-Newton approximation to the Hessian
matrix given by

H =
∑
x

[
∇I

∂W

∂p

]T [
∇I

∂W

∂p

]
. (11)

For further details on how to compute the piecewise linear
affine warp and the Jacobian see [3]. An extension of this
method that includes a global shape normalizing transform
and appearance variation is described in [3].
The resulting AAM variation parameters λ are used together

with the shape parameters p as visual features in the AVASR
system.
Figure 4 shows an AAM fitted to an input image. When

tracking motion in a video sequence, the previous optimal fit is

Fig. 4. AAM fitted to an image

typically used as a starting point for the search in the following
frame.
The AAM fitting method described above is referred to

as the forwards-additive method [5]. In AVASR applications
with real-time performance constraints we are often willing to
sacrifice some accuracy for increased efficiency. In [3] several
variations of the Lucas-Kanade method are evaluated and it is
concluded that the inverse-compositionalmethod gives the best
trade-off between performance and accuracy. We have used
the inverse compositional method for the research presented
in this paper.

III. MODELING AUDIO-VISUAL SPEECH USING DYNAMIC
BAYESIAN NETWORKS

A. Definition

A dynamic Bayesian network (DBN) is an extension of
Bayesian networks that allows for modeling variable-length
(and potentially semi-infinite) sequences of hidden and ob-
served random variables and their dependencies. Variables
are represented by nodes in a graph, and dependencies are
represented by directed arcs connecting the nodes. As with
Bayesian networks, a DBN must constitute a directed acyclic
graph (DAG). The term dynamic is used as DBNs are typically
used to model dynamic systems.
A DBN graph constitutes a set identically structured time

slices. The semantics of a DBN is defined by a prior distribu-
tion over the nodes in the initial slice

p(V1) =
N∏
i=1

p(vi
1|pa(v

i
1)), (12)

and a distribution over a two-slice temporal Bayesian network
defining the transition from a slice to the next

p(Vt|Vt−1) =

T∏
t=1

N∏
i=1

p(vi
t|pa(v

i
t)). (13)
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Fig. 5. HMM modeled as a DBN

Fig. 6. An HMM with GMM observation model

In (12) and (13) vi
t is the random variable represented by the

ith node in time slice t of the DBN and pa(vi
t) is the set of

variables representing the parents of the ith node in the graph.
We restrict parent nodes to lie in the same time slice as node
i, or in the previous time slice. The set of random variables
is typically partitioned into hidden and observed nodes V =
(Z,X) where Z and X are hidden and observed variables,
respectively.
A well-known example of a DBN is the Hidden Markov

Model (HMM). An HMM is probabilistic model defined by

p(X,Z|θ) = p(x1|π)

[
T∏

t=1

p(zt|zt−1,A)

]
T∏

t=1

p(xt|zt,φ)

(14)
where π is the prior over HMM states, A is the transition
matrix and φ is the observation model parameters. From
(12), (13) and (14) we see that an HMM has the graphical
representation shown in Figure 5.
The observation model can in principle have any distribu-

tion. In speech recognition applications it is common to model
observations as a mixture of Gaussians

bt(xt|zt) =
M∑
j=1

wijN (xt|µij ,Σij), (15)

where wij , µij and Σij are the weight, mean and covariance
of the jth mixture component and ith HMM state, respectively.
In fact, by introducing an additional multinomial hidden

variable yt indicating which mixture component is selected,
we can model an HMM with a Gaussian mixture observation
model as a DBN where each node in the graph has a distribu-
tion belonging to the exponential family [6] (we can show that
GMMs are not in the exponential family). This property has
important consequences for inference and learning, as it allows
us to use general DBN inference and learning algorithms. The
graphical representation of the HMM with GMM observations
is shown in Figure 6.

B. Modeling asynchrony

In the DBN framework it becomes possible to model
additional properties of audio-visual speech as extensions to
the basic HMM model. An interesting property to model is
the asynchrony between acoustic and visual speech (when
speaking the motion of articulators comes prior to the sound
being uttered).
One possibility is to simply concatenate the acoustic and

visual features into a single feature vector and use the standard
HMM as shown in Figure 5. We call this the audio-visual
HMM (AV-HMM). A minor variation on the AV-HMM is the
audio-visual product HMM (AV-PHMM). In the AV-PHMM
the audio and visual observation models have separate nodes,
allowing us to weigh each stream differently. The AV-HMM
and AV-PHMM models assume perfect synchrony of the
audio and visual observation streams, and hence might not
adequately capture the natural asynchrony between the two
streams.
Another possibility is to use two separate HMMs for the

audio and visual observation streams. Each stream will then
have a separate state space independent from the other. The
resulting DBN is the audio-visual independent HMM (AV-
IHMM). Although this model will allow state asynchrony
between the acoustic and visual observation streams, it may
fail to capture the natural correlation between the two streams.
Ideally, we would like an asynchrony model that constrains

the level of asynchrony to somewhere in between that of the
AV-PHMM and AV-IHMM.
In [7], several asynchrony DBN models for AVASR are

proposed. From the seven models considered, it was found
that the coupled HMM gives the lowest word error rate on the
AVASR task. In the audio-visual coupled HMM (AV-CHMM)
the observation and state nodes of the audio and visual streams
are separate, but coupled at the state level. The AV-CHMM
model is shown in Figure 7. Note that, to avoid clutter we
have omitted the node labels and the details of the observations
model. The level of asynchrony is constrained by limiting
the number of states that the two streams are allowed to de-
synchronize. In our experiments we have allowed the stream
to de-synchronize by one state only. In practice, we apply this
constraint by setting transitions that lead to ‘illegal’ levels of
de-synchrony to be 0 in the transition matrix.
In the experiments we use the AV-CHMM as the audio-

visual speech model.

C. Learning

Learning DBNs is typically done using the expectation
maximization (EM) algorithm. EM iteratively calculates the
expected sufficient statistics and re-estimates the parameters
of each node in the DBN. This can be done in general for
models that are in the exponential family and with nodes that
have multinomial or Gaussian distributed random variables.
The objective of the EM algorithm is to maximize the log

likelihood function of the model parameters given the observed
data. In general, the algorithm will only find a local maximum.
It is therefore important to have good initial values for the
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Fig. 7. Audio-visual coupled HMM

model parameters. The k-means algorithm is commonly used
for this purpose.
In the common case that we have multiple observation

sequences, e.g. multiple recorded samples of the same word
or phoneme, the expected sufficient statistics for all sequences
are pooled before the parameters are re-estimated.
In an isolated word recognition task, a separate model is

typically learned for each word.

D. Classification

Classification is performed using the max-sum algorithm.
The max-sum algorithm is analogous to the Viterbi algorithm
for HMMs. The max-sum algorithm will calculate the most
likely state sequence given a novel observation sequence. In an
isolated word recognition task, a novel sample is classified as
belonging to the model with the most likely state sequence, i.e.
the model that is most likely to have generated the observation
sequence.
Further details on interference and learning in DBNs can be

found in [6].

IV. EXPERIMENTAL RESULTS

An AVASR system using MFCCs as audio features, AAM
coefficients as visual features, and DBNs for audio-visual
speech modeling, was implemented as described in the previ-
ous sections. The audio and visual feature extraction (MFCCs
and AAMs) is implemented in Python as described in [8]. The
DBNs are implemented using the Bayesian Network Toolkit
[9] written by Kevin Murphy.
In order to test the system we use the Clemson Univer-

sity audio-visual experiments (CUAVE) database [10]. The
CUAVE database consists of 36 speakers, 19 male and 17
female, uttering isolated and continuous digits. Video of the
speakers is recorded in frontal, profile and while moving. We
only use the portion of the database where the speakers are
stationary and facing the camera while uttering isolated digits
(referred to as the ‘normal’ part in the CUAVE documenta-
tion). We use 2/3 of the data from all speakers for training
and the remaining 1/3 for testing. The speakers in the training
set are the same as in the test set, resulting in a closed-set

Fig. 8. Sample frames from CUAVE

speech recognition experiment. As such, the results reported
here are applicable for speaker-dependent automatic speech
recognition systems. A sample frame from each individual in
the data corpus is shown in Figure 8.
Visual feature extraction is done by building individual

AAMs for each speaker in the data corpus. The AAMs are
learned from manually annotated training data. We found it
sufficient to manually annotate every 50th frame of each video.
The visual features (AAM coefficients) are subsequently ex-
tracted by fitting the AAM to each frame of the video.
Training the audio-visual speech recognition system consists

of learning audio-visual DBNs for each digit in the data corpus
from the training data. Learning is performed using the EM
algorithm. Testing is performed by classifying each of the
isolated digit samples in the test data using the max-sum
algorithm. To evaluate the performance of the system we use
the misclassification rate, i.e. the number of wrongly classified
test samples divided by the total number of test samples.
A core feature of AVASR is the robustness to acoustic noise.

We therefore wish to test the effects of varying the level of
noise in the audio channel. Acoustic white Gaussian noise,
ranging from -5dB to 15dB in steps of 5 dB signal-to-noise
ratio (SNR), is added to the test data.
In order to compensate for the varying levels of acoustic

noise in the model, we make use of stream weights. The audio
and visual observation probabilities are weighted exponentially
by stream weights λA and λV , where A and V are the audio
and video streams, respectively. From (15) we get

b̃st = bst (x
s
t |z

s
t )

λs , (16)

where s ∈ {A, V }.
We constrain λA and λV to lie between zero and one and

sum to one, i.e.

λA + λV = 1 for 0 < λA, λV < 1. (17)

For each of the SNR levels, we estimate an optimal stream
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AV-CHMM
SNR -5 0 5 10 15
λA 0.0 0.3 0.6 0.9 1.0
λV 1.0 0.7 0.4 0.1 0.0

TABLE I
OPTIMAL STREAM WEIGHTS FOR THE AV-CHMM

Fig. 9. Misclassification rate for varying SNR levels

exponent. The optimal stream exponent is the exponent that
results in the lowest misclassification rate on the test data. As
the number of classes in our experiment is relatively small
we perform this optimization using a brute-force grid search,
directly minimizing the misclassification rate. We vary λA

from 0 to 1 in steps of 0.1. The corresponding λV will then
be given by 1 − λA. The set of parameters λA and λV that
results in the lowest misclassification rate on the test data are
chosen as optimal parameters. The optimal stream weights for
the AV-CHMM for each SNR level is shown in Table I.
In order to evaluate performance, we perform classification

for each of the SNR levels using the estimated optimal stream
weights for the respective SNR levels. This is not an unrealistic
model, as several methods exist for estimating the noise
level in both the audio and video input signals [11]. We
evaluate the system performance by calculating the average
misclassification rate for the digits using each of the SNR
levels. We compare audio-only, visual-only, and audio-visual
classifiers. Figure 9 shows average misclassification rate for
the different models and noise levels.
From the results we see that the visual channel indeed

does contain information relevant to speech, but that the
performance of visual-only speech recognition is, as expected,
lower than audio-only speech recognition. However, as SNR
in the audio channel decreases, AVASR performs significantly
better than audio-only speech recognition. This is because
the combination of acoustic and visual speech information is
superior to any of the two modalities separately.

V. CONCLUSION

In this paper we propose a basic AVASR system that
uses MFCCs as acoustic features, AAM parameters as visual
features, and audio-visual DBNs for modeling audio-visual
speech.
The AVASR system is tested using the CUAVE database.

Based on the experimental results, we conclude that the visual
channel does contain information that is relevant to speech,
but that the performance of visual-only speech recognition
(automatic lip-reading) is, as expected, lower than audio-only
speech recognition. However, in the presence of increasing
acoustic noise we are able to increase recognition performance
beyond that of audio-only speech recognition by combining
acoustic and visual speech information. This conforms to
our daily experience, as it is typically easier to understand
someone speaking if we can indeed see them.
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